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1. Intro
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Intro: FineWeb2

- 1000+ languages
- ~100 CommonCrawl snapshots
- Same data-driven approach as FineWeb 150+ experiments
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Intro: FineWeb2
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2. Data quality
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Data quality

https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/ 
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Data quality: Pretraining

● Base models: general purpose models
● Maximal coverage/diversity
● Massive quantities of text

Download & process “the internet”
(aka CommonCrawl)
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Data quality: How to evaluate?

● Hard to define
● Manual data inspection

○ Top domains
○ Kept/removed documents
○ Important but not scalable

● Gold standard perplexity
○ Biases
○ Not always correlated model perf

● Train (small) models!
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Data quality: Train models!

Model A

- X params
- Arch Y
- Tokenizer Z
- N tokens
- Trained on dataset A

Model B

- X params
- Arch Y
- Tokenizer Z
- N tokens
- Trained on dataset B

Evaluate & compare:
Score B > Score A ⇒ Dataset B > Dataset A
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3. Experiments & Evaluation
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Experiment setup

● Monolingual models
● Impossible to train for all languages :(
● Train on 9 canary languages
● Diverse in:

○ Family
○ Script
○ Resource availability

● (should have benchmarks)
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9 canary languages
Language Code Family Script Resource 

availability

Arabic ar / arb Afro-Asiatic Arabic Medium

Chinese zh / cmn Sino-Tibetan Han High

French fr / fra Indo-European (Italic) Latin High

Hindi hi / hin Indo-European 
(Indo-Iranian) Devanagari Medium

Russian ru / rus Indo-European 
(Balto-Slavic) Cyrillic High

Swahili sw / swh Niger-Congo Latin Low

Telugu te / tel Dravidian Telugu Low

Thai th / tha Kra-Dai Thai Medium

Turkish tr / tur Turkic Latin Medium 14



Tokenizer

- New or off the shelf?
- Off the shelf

- 1 per language or 1 for all?
- 1 for all simplifies the setup

- Vocab size?
- Trade offs for model size

- How to compare?
- Subword fertility
- Proportion continued words
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Tokenizer: metrics

(Lower is better)

Subword fertility (sf)
Tokens per real word. How 
aggressively a tokenizer splits. (1+)
1 = tokenizer vocab contains all words

Proportion continued words (pcw)
Real text words encoded w/ 2 or more 
tokens. How often a tokenizer splits. (0-1)
0=never splits; 1=always splits

Rust et al. (2020) “How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models”
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https://arxiv.org/abs/2012.15613


Tokenizer - metrics on Wikipedia

Issues with “unk”, preserving \s

Too big
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Final ablation setup

- Similar to original FineWeb
- Llama architecture
- 14 hidden layers (24 originally)
- 32 attention heads
- 2048 sequence length
- Tied embeddings

~1.46B parameters

Chinchilla optimal at ~29BT
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Selecting tasks

Easy for English:

- Well established benchmarks (MMLU, Hellaswag, etc)
- Widely used
- Supported by all eval frameworks

For non-English:

- Machine-translated (translationese)
- Not widely validated/hard to find
- Specially worse for low-res
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Assumptions

- We have N “reference” datasets
- mC4
- CC-100
- CulturaX
- HPLT
- “raw/dirty” CommonCrawl

- We trained N models on these datasets
- We evaluated checkpoints from each model on many 

different tasks
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How do we choose 
high-signal tasks for 
pretraining?
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High-signal: monotonicity
Rationale: We should see learning as training progresses

Measure: Spearman rank correlation between steps and score
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High-signal: low noise
Rationale: Score differences should not be caused by evaluation noise

Measure: SNR = (avg score / std_dev); with std_dev coming from diff seeds of “noisy” data
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High-signal: above random
Rationale: Can not conclude anything if the model has random performance [for pretraining ablations!]

Measure: Max distance to RB in std_dev; with std_dev coming from diff seeds of “noisy” data
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High-signal: ordering consistency
Rationale: We want to generalize to larger scales, pre-condition for that is stable ordering at the experiment scale

Measure: Kendall-tau for every consecutive step pair
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Evaluation quirks: CF vs MCF
Multiple choice formulation (MCF)
Question: What is the median international income as of 
2020?
A. $300
B. $1,000
C. $10,000
D. $30,000
Answer:

Targets: “ A.”, “ B.”, “ C.”, “ D.”

Cloze formulation (CF)
Question: What is the median international income as of 
2020?
Answer:

Targets: “ $300”, “ $1,000”, “ $10,000”, “ $30,000”

Groeneveld et al. (2024) “OLMo: Accelerating the Science of Language Models”
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https://arxiv.org/abs/2402.00838


Normalizing logprobs

Account for different completion lengths/baseline logprobs

- raw
- _norm (character length normalization)
- _norm_token (nb of tokens normalization)
- _norm_pmi - use unconstrained logprobs to normalize, i.e., logprobs of 

`Answer: (completion)` without the question
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Normalizing logprobs: when to use what

Account for different completion lengths/baseline logprobs

- raw: all answers are a single token
- _norm: often used when comparing models with diff tokenizers
- _norm_token: comparing models with the same tokenizer
- _norm_pmi - usually for weird or “unlikely” answers, e.g., “pink giraffe with 

green stripes” - will usually be unlikely
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Evaluation signal: using continuous metrics

Schaeffer et al. (2024) “Why Has Predicting Downstream Capabilities of Frontier AI Models with Scale Remained Elusive”
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https://arxiv.org/abs/2406.04391


Accuracy vs Probability
- Accuracy is closer to actual tasks people 

do
- Easier to understand conceptually
- Clear meaning and well defined baseline 

(1/#answers)
- Noisier
- Normalization greatly affects results

- Relatively abstract not very realistic format
-  
- Somewhat obscure (is 50% good (?))
- Random baseline more abstract
-  
- Usually very clean (monotonic etc)
- Normalization doesn’t change as much
- Could overfit on specific samples
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Evaluation: task diversity

- Reading comprehension (RC): Questions based on context
- General knowledge (GK): Questions about facts without added context.
- Natural Language Understanding (NLU): Semantics of provided input.
- Common-sense reasoning (RES): Simple reasoning requiring embodied 

knowledge.
- Generative tasks: Ability to generate text in the target language without the 

"help" of multiple choice options
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Generative tasks metrics

Exact

- Full
- Prefix
- Suffix

F1
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After all that… We get 96 
benchmarks across our 
9 languages

To read more
FineTasks: Finding signal in a haystack of 200+ multilingual tasks
https://huggingface.co/spaces/HuggingFaceFW/blogpost-fine-tasks 33
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Aggregating scores from all tasks

- Simple average [FineWeb] - not 
great

- Rescale with RB 
[OpenLLMLeaderboard]

- Our approach: Z-Score
https://huggingface.co/spaces/open-llm-leaderboard/blog 
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https://huggingface.co/spaces/open-llm-leaderboard/blog


4. Separating words
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Separating words: what for and why is it hard?

Needed for

- Heuristic filters
- Deduplication
- Evaluations

Challenges:

- Many writing systems have diff word boundary chars (Ethiopic)
- Some have no boundaries (Chinese, Japanese, Korean)
- Even for English, “space + punct” not enough

Use word tokenizers/segmentors
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Native word tokenizers

- SpaCy
- Stanza
- IndicNLP (indic languages)
- PyThaiNLP (Thai)
- Kiwipiepy (Korean)
- KhmerNLTK (Khmer)
- Botok (Tibetan)
- …
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Proxy word tokenizers

https://www.ethnologue.com/browse/families/ 38

https://www.ethnologue.com/browse/families/


Tokenizer assignments

1. Assign native
2. Family tree method
3. Biggest language per script
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Short questions break
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5. Building
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Starting point: FineWeb

~60% extracted text from ~100 CommonCrawl snapshots
Approach: adapt the pipeline as closely as possible
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5.1 Language Identification

43



Language Identification (LID)

- Limits languages that we can process
- Affects quality of predictions

Classifiers:

- CLD2/3 (106 languages)
- fastText based

- FT176 (CC-Net) (176)
- OpenLID (193)
- GlotLID (1880)

- Transformer based (expensive and slow)
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The case for GlotLID

- Allows us to support many more languages (including low-res)
- Reduce “out-of-model cousin” errors [Caswell et al. 2020, Kreutzer et al. 

2022]
- Script detection
- Labels contain script
- UND label
- UNK/noise labels
- They report strong benchmarks

What about model performance?
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GlotLID vs fastText
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LID confidence thresholds
- Most works use a single threshold for all languages (~0.5)
- Not all languages are equal

Costa-jussà et al. (2022) No Language Left Behind: Scaling Human-Centered Machine Translation
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https://arxiv.org/abs/2207.04672


Testing different thresholds/removal %s

5% ~ 0.9

15% ~ 0.87
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Testing different thresholds/removal %s

20% ~ 0.65

64.24% ~ 0.3 (1.6 
epochs)
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Thresholds summary

Formula: min(max(median - std_dev, 0.3), 0.9) 50



Thresholds summary
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5.2 Deduplication
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Deduplication
- Per language
- Global vs per shard 

questions from 
FineWeb

- Free upsampling/quality 
signal?

Compromise: save cluster 
size
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Different impact per language

Chinese

Russian

Arabic

French
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Different impact per language

● Big boost: russian and turkish
● Small boost: arabic and french
● No change: chinese and thai

● Low vs high res?
● Difference based on word sizes?

○ 3-10 ngram size for zh: no change (2%)

Avg word length

zh w/ diff n-gram sizes 55



5.3 Heuristic filters
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Heuristic filters

Albalak et al. (2024) “A Survey on Data Selection for Language Models” 57

https://arxiv.org/abs/2402.16827


Filtering: adapting filters

- Word tokenizers
- Character sets (terminal punctuation, etc)
- Stopwords
- Adapting thresholds

- Ground truth/reference data?
- Formulas/approach?

- Filters to adapt:
- Gopher quality
- Gopher repetition
- C4 filters
- FineWeb filters

- Loooots of experiments
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Adapting based on distributions
(cumulative)
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Adaptation recipes

- Quantiles
- Mean ± n*std_dev
- Median ± n*std_dev
- 10% [CulturaX, Nguyen et al. (2023)]
- Median ratio [HPLT2, Gibert et al. (2024)*]

- Wikipedia
- Actual CommonCrawl data
- GlotLID training corpus
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Filtering results

- Diff methods better for diff things
- Some better on web vs wiki

Final decisions:

- Drop C4 filters
- 10% for repetition on web
- Quantile with wiki on the rest
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Stopwords
- Extra LID fixer
- Very sensitive to corpus contamination
- Issues with common words across languages
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5.4 Rehydration: free boost
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Back to dedup

Remember cluster sizes? What if we “rehydrate” the dataset?

https://huggingface.co/spaces/LLM360/TxT360
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Quality by cluster size
Matches experimental results!
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Quality by cluster size
Matches experimental results!
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Iterative improvements
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6. Conclusion
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Final comparisons
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Comparisons (ar)
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Comparisons (fr)
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Comparisons (zh)
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Fully reproducible
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The end

Dataset

https://huggingface.co/datasets/HuggingFaceFW/fineweb-2

Code/configs
https://github.com/huggingface/fineweb-2 

FineWeb v1 blogpost

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1 

FineWeb2 blogpost: coming soon
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